GBAS Ionospheric Anomaly Monitoring Based on a Two-Step Approach
نویسندگان
چکیده
As one significant component of space environmental weather, the ionosphere has to be monitored using Global Positioning System (GPS) receivers for the Ground-Based Augmentation System (GBAS). This is because an ionospheric anomaly can pose a potential threat for GBAS to support safety-critical services. The traditional code-carrier divergence (CCD) methods, which have been widely used to detect the variants of the ionospheric gradient for GBAS, adopt a linear time-invariant low-pass filter to suppress the effect of high frequency noise on the detection of the ionospheric anomaly. However, there is a counterbalance between response time and estimation accuracy due to the fixed time constants. In order to release the limitation, a two-step approach (TSA) is proposed by integrating the cascaded linear time-invariant low-pass filters with the adaptive Kalman filter to detect the ionospheric gradient anomaly. The performance of the proposed method is tested by using simulated and real-world data, respectively. The simulation results show that the TSA can detect ionospheric gradient anomalies quickly, even when the noise is severer. Compared to the traditional CCD methods, the experiments from real-world GPS data indicate that the average estimation accuracy of the ionospheric gradient improves by more than 31.3%, and the average response time to the ionospheric gradient at a rate of 0.018 m/s improves by more than 59.3%, which demonstrates the ability of TSA to detect a small ionospheric gradient more rapidly.
منابع مشابه
Enhancements of Long Term Ionospheric Anomaly Monitoring for the Ground-Based Augmentation System
Extremely large ionospheric gradients can pose a potential integrity threat to the users of ground-based augmentation systems (GBAS). A better understanding of the ionospheric behavior (not limited to that during extreme ionospheric activity) is important in the design and operation of GBAS to meet its integrity and availability requirements. A tool for long-term ionosphere monitoring was devel...
متن کاملAssessment of Ionospheric Gradient Impacts on Ground-Based Augmentation System (GBAS) Data in Guangdong Province, China
Ionospheric delay is one of the largest and most variable sources of error for Ground-Based Augmentation System (GBAS) users because inospheric activity is unpredictable. Under normal conditions, GBAS eliminates ionospheric delays, but during extreme ionospheric storms, GBAS users and GBAS ground facilities may experience different ionospheric delays, leading to considerable differential errors...
متن کاملAutomated Ionospheric Front Velocity Estimation Algorithm for Ground-Based Augmentation Systems
Ionospheric anomalies, which may occur during severe ionospheric storms, could pose integrity threats to Ground-based Augmentation System (GBAS) users [1], [2], [3]. The ionospheric threat for a Local Area Augmentation System (LAAS), a GBAS developed by the U.S. Federal Aviation Administration (FAA), was modeled as a spatially linear, semi-infinite “front” (like a weather front) with constant p...
متن کاملResults from Automated Ionospheric Data Analysis for Ground-Based Augmentation Systems (GBAS)
Extremely large ionospheric spatial gradients could cause potential integrity threats to Ground-Based Augmentation System (GBAS) users. The importance of understanding ionosphere behavior is not limited to cases of extreme ionospheric events. Broader knowledge of both nominal and anomalous ionospheric behavior would help improve the design and operation of GBAS. We developed an automated tool f...
متن کاملAn Investigation of Local-Scale Spatial Gradient of Ionospheric Delay Using the Nation-Wide GPS Network Data in Japan
This paper presents results from an investigation of ionospheric delay that might influence GBAS (GroundBased Augmentation System) especially with a focus to local-scale spatial gradient using the nation-wide dense GPS network in Japan (GEONET; GPS earth observation network), which currently consists of about 1,000 GPS stations with a typical separation of 20 km. GBAS is a system based on the d...
متن کامل